Laboratory Diagnosis of Tropical Fever Shalini Dewan Duggal, Tulsi Das Chugh Tropical diseases are the diseases which are prevalent in the tropics but usually not seen in temperate climates. These may be vector borne or occur due to conditions of high humidity and temperature or sudden temperature changes which favour growth of particular microorganisms. Diagnosis and management of tropical infectious diseases is important as they usually run a dramatic course if not treated. They may be caused by a variety of pathogens including bacteria, viruses, parasites and fungi; hence an accurate diagnosis leads to appropriate management. Diagnosis is also important from epidemiological purview to assess the burden of these diseases and monitor the effectiveness of national and international health programmes. Recently the Indian society of Critical care medicine formulated certain guidelines and recommended a 'syndromic approach' to diagnosis and treatment of critical tropical infections. They have identified five major clinical syndromes: undifferentiated fever, fever with rash / thrombocytopenia, fever with acute respiratory distress syndrome (ARDS), fever with encephalopathy and fever with multi organ dysfunction syndrome. ## **Diagnosis of Tropical Diseases:** Diagnosis of a tropical infectious disease may require certain clues or hints which include a properly obtained history, epidemiological factors, recent travel and presenting clinical features 1. These infections have been categorised as arthropod-borne, rodent- associated, reservoir associated or human-human spread. An initial diagnosis may be based on the basis of interval between the exposure and the appearance of first symptom; which may be Short (\leq 10 days), Intermediate (7 – 28 days), Long (> 4 weeks) or Variable (weeks to years). A full blood count and examination of blood smears is a nearly obligatory basic investigation. This may be accompanied by biochemical examinations like liver or kidney function tests or CSF examinations as the case may be. However, definitive diagnosis of any infectious disease relies on the microbiological investigations resulting in confirmation. ## Laboratory Diagnosis in a Microbiology Laboratory: Laboratory diagnosis may detect an organism directly by visualization under a microscope or by growing them in culture media. Culture of an organism and further identification by means of various tests proves the identity of the causative agent in an infectious disease, hence considered Gold standard. It also helps to test the organisms for susceptibility to antimicrobial agents under laboratory conditions. However, not all organisms can be cultured or identified routinely or results may not be available for days or weeks. For these agents, indirect methods of diagnosis are considered. These include serological or molecular methods. Serological tests include agglutination tests such as latex agglutination, enzyme immunoassays, Western blot, precipitation tests, and complement fixation tests, and molecular tests may be nucleic and non-nucleic acid–based identification tests. In most Microbiology Laboratories, microscopic examination, culture facilities and some serological tests are available; other tests are done in special/research Microbiology Laboratories. A list of bacterial, viral, parasitic and fungal diseases along with their causative agents, source of infection and relevant investigations are presented in Table 1. **Table 1: Tropical Infectious Diseases:** | Tropical Dis-
ease | Causative
Agent | Source of
Infection | Sample
required | Investiga-
tions | Labo-
ratory
Type | Sensitivity | Specificity (%) | |----------------------------|--------------------------------|---|-----------------------------------|--|-------------------------|-------------|-----------------| | Bacterial Tropica | al Diseases | | | | | | | | Legionellosis ² | Legionella
pneumoph-
ila | Cooling
towers,
Humidifiers, | Blood,
Serum, Re-
spiratory | Direct fluores-
cent antibody
staining | Special | 25-70 | 90 | | | | Respiratory
therapy
equipment,
Potable/ hot
water systems | Urine | Indirect
fluorescent
antibody test
(IFA) | Special | 78-91 | >99 | | | | | | Cultures of
sputum, low-
er respiratory
tract secre-
tions, tissue,
blood | Special | 10-80 | 100 | | | | | | Urinary
antigen | Routine | 70-90 | >99 | | | | | | Polymerase
chain reaction
(PCR) | Special | 30-
100 | >90 | | Leptospirosis ³ | Leptospira
spp. | Urine, body
fluids, or
organs of
infected
animals, or by
contaminated
soil or water) | Blood, CSF,
body fluids
or tissues | Culture of
body fluids
or tissues like
liver, muscle,
kidney, skin,
eyes.
GOLD Stan-
dard | Special | 6-28 | 100 | |----------------------------|------------------------------|--|--|--|---------|-------|-------| | | | | | Microscopic
agglutination
testing (MAT) | Special | 86-96 | >98 | | | | | | IFA | Special | 64 | >95 | | | | | | Lateral flow
immunochro-
matographic
test | Routine | 87 | 70 | | | | | | PCR | Special | 55 | 82 | | Melioidosis ⁴ | Burkholderia
pseudomallei | Inoculation,
inhalation | Blood,
Serum,
urine, spu-
tum, skin | Culture of specimen: GOLD Standard | Special | 51-68 | 100 | | | | | lesions/
abscesses,
throat/
rectal
swabs | Gram stain,
Immunoflu-
orescence
microscopy | Special | 40-90 | >90 | | | | | | Indirect
haemagglu-
tination test,
titres | Special | 63-95 | 74-97 | | | | | | IgM ELISA | Special | 80 | 95 | | | | | | PCR | Special | | | | Meningococcal | Neisseria
meningitidis | | Cerebro-
spinal | CSF Gram
stain | Routine | 60-90 | >97 | |----------------------|--|---|---|--|---------|------------|-------| | Disease ⁵ | lets/discharg-
es from nose
and throat of
patients | fluid (CSF),
Blood,
Serum,
Skin rash
aspirates | Blood and
CSF cultures:
GOLD Stan-
dard | Routine | 70-85 | 100 | | | | | and healthy
carriers | | Antigen
detection in
CSF/Serum
by latex ag-
glutination | Routine | 50-93 | >99 | | | | | - | Smears/
culture from
petechiae | Routine | 60-70 | >90 | | | | | | PCR | Special | 91-94 | >96 | | Q fever ⁶ | fever ⁶ Coxiella Zoonosis. burnetii Cattle, sheep, goats or infected hu- mans through Inhalation, tick bites, un- pasteurized milk and milk products. | Whole
blood,
serum,,
CSF, pleu-
ral fluid,
bone/ liver | Culture of
affected
tissue: GOLD
Standard | Bio-
safety
level 3
(BSL 3)
labora-
tories | 15-53 | 100 | | | | | pasteurized
milk and milk | biopsy/
excised
heart
valve,
milk,
placenta
or foetal | Increased
Phase I and
II IgM, IgG
titres by Mi-
croimmuno-
fluorescence | Special | 58-
100 | 92-99 | | | | i i | tissue | Increased
Phase II IgM
and IgG titres
by ELISA | Special | 80-84 | >97 | | | | | | Microaggluti-
nation | Special | 81 | 98 | | | | | | Immunohis-
tochemistry
of tissue | Special | 71 | >90 | | | | | | PCR | BSL 3 | 84 | 100 | | Tuberculosis ⁷ | Mycobacteri-
um tubercu-
losis | Infected person | Sputum & other respiratory specimens, | Ziehl Neelsen
Fluorescence
Microscopy | Routine
Special | 20-80
30-90 | >90
>90 | |---------------------------|--------------------------------------|-----------------|---------------------------------------|---|---|----------------|------------| | | | | abscess,
blood,
bone mar- | Solid Culture-
LJ Media | BSL 3 | 24 | 100 | | | | | row, body
fluids,
urine, gas- | Liquid Cul-
ture: GOLD
Standard | BSL 3 | 41 | 100 | | | | | tric lavage,
faeces | Mantoux test | Clinical | 65-94 | 50-95 | | | | | | PCR | Special | 43-98 | 90-99 | | | | | | Serological
tests | Not
recom-
mend-
ed in
India. | 60-70 | 40-50 | The presence of acid-fast-bacilli (AFB) on a sputum smear or other specimen often indicates TB disease. At least two sputum smears should be examined in a case of suspected pulmonary tuberculosis. A positive culture for M. tuberculosis confirms the diagnosis of TB. Culture examinations should be completed on all specimens, regardless of AFB smear results. | Typhoid and
Paratyphoid
fever ⁸ | Salmonella
enterica se-
rotype Typhi, | Water or food
contaminated
by faeces of | Blood,
bone mar-
row, urine, | Culture of blood, bone marrow- | Routine | 40- 90 | 100 | |--|---|---|------------------------------------|--|---------|--------|------------| | | Paratyphi A,
B or C | , , | stool,
Serum | Widal Test | Routine | 88 | 70-80 | | | | | | IgM Detection against S. Typhi | Routine | 78-96 | 76-90 | | | | | | Anti lipopoly-
sachharide
(LPS) haem-
agglutination | Routine | 60 | 98.2 | | | | | | Antigen
detection
by ELISA or
co-agglutina-
tion | Routine | | 25-90 | | | | | | PCR | Special | 69-85 | 98-
100 | Culture is the **GOLD Standard** of diagnosis. Sensitivity of blood culture varies according to the amount of blood cultured, number of specimens, antibiotic therapy, and timing of specimen collection. The sensitivity of culture is 85-90% for bone marrow, 40-50% for blood, around 60% for rose spots, 40-60% and <10% for stool and urine cultures, respectively. | Typhus: Scrub
Typhus ⁹ | Orientia
tsut-
sugamushi | Trombiculid mites | Blood,
serum,
biopsy or | Weil-Felix
OXK aggluti-
nation | Routine | 89 | 89 | |---|--------------------------------|-------------------|-------------------------------|--|---------|------------------|------------| | | | | _ | Scrub Ty-
phus-Rapid
Immunochro-
matographic
test | Routine | 74-96 | 86-99 | | Louse-borne or Rickettsia prow
louse (Pediculu
bite wound | vazekii by excre | ement of body | | Murine
Typhus
Immunoblot
test | Routine | 51-91 | 87-
100 | | Murine or Ende
sia typhi, transm
Flea (Xenopsyll | itted by Bite or e | excreta of Rat | | Histopathological examination of tissue sections by Giemsa or Gimenez staining | Special | 53-75 | 100 | | | | | | IFA: GOLD
Standard | Special | 46-
100 | 78-
100 | | | | | | Indirect Immunoperoxidase staining | Special | 50-
100 | 80-
100 | | | | | | Cell Culture | Special | 29-59 | 100 | | | | | | PCR | Special | <1
PFU/
ml | 100 | | Viral Tropical D | iseases | | | | | | | |------------------------------------|--|---|--|---|------------|------------------------|------------| | Avian influ-
enza ¹⁰ | Influenza A
H5N1 | Direct or
close contact
with infected | Throat
/nasal
swabs or | Viral Culture
GOLD Stan-
dard | BSL 3 | 100 | 100 | | | | poultry | aspirates | Real-time
reverse tran-
scription-PCR | Special | 100 | 100 | | | | | | IFA test | Special | 70-
100 | 80-
100 | | | | | | Rapid Anti-
gen Detection | Routine | 70-75 | 90-95 | | Chikungunya ¹¹ | ngunya ¹¹ CHIK virus of genus Alpha-virus, family transmitted | Serum,
plasma
or whole | IgM Antibody
Capture
(MAC) ELISA | Routine | 84-
100 | >99 | | | | Togaviridae | by bite of Aedes aegyptiand Aedes | blood | IFA | Special | 75-
100 | >99 | | | | albopictus
mosquitoes | - | Lateral flow
immunochro-
matography | Routine | 10-
100 | >95 | | | | | | Culture
GOLD Stan-
dard | BSL 3 | 79-
100 | 100 | | | | | | PCR | Special | 0.001-
1 PFU
/ml | 100 | | Crimean-Con-
go Haemor-
rhagic Fever ¹² | Genus Nairo-
virus, Family
Bunyaviridae | Ticks and
livestock
animals, close
contact with
the blood,
secretions, or- | Serum,
Blood,
Body flu-
ids, Tissue
Biopsy | IgM ELISA Antigen detection IFA | Routine Special | 75-97
50-
100
75-
100 | 100
100
97-
100 | |--|---|---|--|--|-----------------|-----------------------------------|--------------------------| | | | gans or other
bodily fluids
of infected
persons | | Pseu-
do-plaque
reduction
neutralization | Special | 98 | 100 | | | | | | Reverse
transcriptase
polymerase
chain reaction
(RT-PCR) | Special | 79-83 | 100 | | | | | | Virus
isolation by
cell culture
GOLD Stan-
dard | BSL 3 | Poor | 100 | | Dengue ¹³ | Genus
Flavivirus of | Arboviral infection | Whole
Blood, | RT-PCR | Special | 80-90 | 89-
100 | |----------------------|----------------------------|--------------------------|-------------------|---|------------------------------|------------|------------| | | the family
Flaviviridae | by bite of Ae- T | Serum,
Tissues | MAC ELISA | Routine | 90 | 98 | | | | des aegypti
and Aedes | | IgG ELISA | Routine | 91 | 99 | | | | albopictus
mosquitoes | | IgM Rapid
test | Not
Recom-
mend-
ed | 21-99 | 77-98 | | | | | | NS1 Antigen
Detection | Routine | 71-
100 | 98-
100 | | | | | | Viral isolation | BSL 3 | <50% | 100 | | | | | | GOLD Stan-
dard | | | | | | | | | Plaque
reduction and
Neutraliza-
tion test | Special | 96 | 93-95 | | | | | | Immunocyto-
chemistry | Special | 100 | 91 | | | | | | Mosquito inoculation | Special | 98-
100 | 100 | During the initial five days, the virus can be detected in serum, plasma, circulating blood cells and other tissues and virus isolation in cell culture, detection of viral RNA by nucleic acid amplification tests (NAAT), or by detection of viral antigens (NS1) by ELISA can be done. At the end of the acute phase of infection, IgM antibodies appear in 50% of patients by days 3-5 after onset of illness, increasing to 80% by day 5 and 99% by day 10. A four-fold or greater increase in antibody levels measured by IgG ELISA or haemagglutination inhibition test in paired sera indicates an acute or recent flavivirus infection. During a secondary dengue infection IgG is detectable at high levels, even in the acute phase. Early convalescent stage IgM levels are significantly lower in secondary infections than in primary ones. | Haemorrhagic
fever with re-
nal syndrome ¹⁴ | Genus
Hantavirus of
family Bunya-
viridae | Aerosolized rodent excreta | Blood,
tissue | IgM Rapid
immunochro-
matography
test | Routine | 80-97 | 90-
100 | |--|--|----------------------------|------------------|--|---------|------------|------------| | | | | | IgM ELISA | Special | 94 | 99 | | | | | | IgM IFA | Special | 96-
100 | 99 | | | | | | Viral isolation
by Cell
culture | Special | 80-95 | 100 | | | | | | GOLD Stan-
dard | | | | | | | | | RT-PCR | Special | 94 | 100 | | Hepatitis A ¹ | Genus
Hepatovi- | Contaminated food or | Serum,
Faeces | IgM anti-HAV
ELISA | Routine | 100 | 99 | | | rus Family:
Picornavir-
idae | water | | RT-PCR
GOLD Stan-
dard | Special | - | 100 | | Hepatitis B 1, 15 | Genus Ortho-
hepadnavi-
rus, Family
Hepadnavi- | Parenteral
transmission,
infected injec-
tion needles, | Blood-Se-
rum or
Plasma | HBsAg Rapic
Immunochro
matographic
test | 1 | 94.5-
100 | 91-
100 | |------------------------|---|---|-------------------------------|--|-------------|--------------|---------------| | | ridae | vertical and
sexual trans-
mission | | HBsAg Latex
Agglutination | | 66 | 98 | | | | | | HBsAg ELISA | Routine | 96-98 | 98-
100 | | | | | | Anti-HBs
ELISA | Routine | 94-98 | 98-
100 | | | | | | HBeAg ELISA | Routine | 98-99 | 98-
100 | | | | | | Anti-HBe
ELISA | Routine | 90-96 | 98-
100 | | | | | | Anti-HBc
ELISA | Routine | 92-96 | 98-
100 | | | | | | HBV RT- PCF
GOLD Stan-
dard | Special | 90-95 | 100 | | | | Laborat | ory Markei | s for Hepatiti | s B | | • | | Condition | HBsAg | HBeAg | HBV
DNA | Anti HBs | Anti
HBe | - | I Anti
IBc | | Acute
Infection | + | + | + | - | - | | + | | Chronic
Infection | + | + | +/- | - | - | | + | | Fulminant
hepatitis | +/- | + | + | - | - | | + | | Vaccinated person | +# | - | - | - | - | | - | | Infection immunity | - | - | - | + | +/- | | - | | Healthy
carrier | + | - | - | - | + | | + | | Hepatitis C ¹⁶ | Flavivirus | transmission, | Blood | ELISA HCV
Core Antigen | Routine | 90-95 | 100 | |---------------------------|------------------------------|---|---------------------------------|---------------------------------------|---------|------------|------------| | | | infected nee-
dles, vertical
and sexual
transmission | | Recombinant immunoblot assay | Special | 78 | 90 | | | | | | ELISA Anti-
HCV (IV
generation) | Routine | 99-
100 | >99 | | | | | | Saliva-based
anti-HCV | Routine | 87 | 99 | | | | | HCV RNA
PCR GOLD
Standard | Special | 96 | 99-
100 | | | Hepatitis E ¹⁷ | Genus Hepe-
virus, Family | | Blood,
stool | ELISA HEV
IgM | Routine | 52-91 | 74-
100 | | | Hepeviridae | taminated
water. | | ELISA HEV
IgG | Routine | 60-91 | 96-98 | | | | | | IgM HEV
Immunoblot | Routine | 95 | 100 | | | | | | IgG HEV
Immunoblot | Routine | 97 | 85 | | | | | | HEV PCR
GOLD Stan-
dard | Special | 83-
100 | 100 | | Human Immunodeficiency virus (HIV) ¹⁸ Lentivirus, family Retroviridae | an HIV in-
fected person
through sex-
ual or vertical
transmission, | Whole
blood, se-
rum. Saliva
and urine
are not | HIV-1/2 Ab
Rapid test
Serum HIV-
1/2 ELISA | Routine
Routine | 99-
100
99-
100 | 98-
100
97-
100 | | |--|---|--|---|---|--------------------------|--------------------------|------------| | | mucocutaneous or parenteral exposure | taneous or parenteral | being used for testing in India. | HIV-1and
HIV-2 Ab/
HIV-1 p24
antigen | Routine | 100 | >99 | | | | | HIV-1/2 Ab
(Oral fluids) | Routine | 54-
100 | 67-
100 | | | | | | | HIV-1 Urine | Routine | 92-
100 | 95-
100 | | | | | IFA an-
ti-HIV-2 | Special | 93-99 | 98-
100 | | | | | | HIV Western
Blot | Special | 100 | 100 | | | | | | HIV DNA
PCR GOLD
Standard | Special | 90-96 | 54-
100 | | After Pre-test counselling, NACO guidelines for testing are followed. Three different kits with different antigen system and / or different principles of tests are required. If the first test is negative, the patient is considered non-reactive. If the test serum is reactive with two tests and non-reactive with the third, it is reported as "indeterminate" and patient is called back for repeat testing after 2-4 weeks. The test used as the screening test is one with the highest sensitivity and the supplementary second and third tests are with the highest specificity. If all the 3 tests are reactive, post-test counselling is done and then the patient is referred to ART centre for treatment. For confirmation and viral load determination, molecular tests are done. | Parasitic Tropical Diseases | | | | | | | | | |---|--|---|-----------------------------|---|---------|------------|-------|--| | Amoebiasis ¹⁹ Entamoeba
histolytica | | Food or water
contaminated
with faeces
containing
infectious
cysts | Stool, Abscess fluid, serum | Stool Micros-
copy | Routine | 10-60 | 10-50 | | | | | | | Microscopy
(abscess fluid) | Routine | <25 | 10-50 | | | | | | | Culture with isoenzyme analysis | Special | <60 | 100 | | | | | | | GOLD Stan-
dard | | | | | | | | | | HK-9 antigen
detection
(ELISA) | Routine | 65-
100 | >90 | | | | | | | Abscess antigen detection (ELISA) | Routine | 100 | >90 | | | | | | | Stool antigen
detection
(ELISA) | Routine | >95 | >95 | | | | | | | Serum
antibody
detection
(ELISA) | Routine | 70-90 | 85-90 | | | | | | PCR (stool) | Special | >70 | >90 | | | | Leishmania donovani Leishmania donovani Arthropod borne (Sandfly bite), Zoonotic in some countries | borne (Sand-
fly bite), Zoo- | Blood,
bone
marrow, | Microscopy of leucocytocon-centrates | Routine | <80 | >80 | | |--|---------------------------------|--|--------------------------------------|---------|---------|-------|-----| | | lymphoid
tissues,
Serum | Histological
and impres-
sion smear
examination | Special | 48-76 | >80 | | | | | | Culture from
Buffy coats
GOLD Stan-
dard | Special | <80 | 100 | | | | | | Antigen
detection
ELISA | Routine | 98 | 96-99 | | | | | | IFA | Special | 81 | 100 | | | | | | | Western blots | Special | 88 | 100 | | | | | | | PCR | Special | 88-95 | 100 | | Malaria ²¹ Plasmodium vivax, P. falciparum, P. malariae, P. ovale, P. knowlesi | Bite of infected mosquitoes, rarely by transfusion. | Blood,
Serum | Microscopy
Thin blood
film | Routine | 100
para-
sites/
µl | 100 | | |---|---|-----------------|--|--|--------------------------------|------------|------------| | | | | Microscopy
Thick blood
film | Routine | 10-20
para-
sites/
µl | 100 | | | | | | | Fluorescent
Microscopy | Special | 81-
100 | 86-
100 | | | | | | Quantitative
buffy coat
examination | Special | 41-93 | 93 | | | | | | Immunofluorescence (1:128) | Special | > 90 | > 90 | | | | | | P. falciparum
Anti-HRP-2
antibody test | Routine | 77-98 | 83-98 | | | | | Plasmodium
pLDH or
Aldolase
Rapid test at
100-500/µL of
blood | Routine | 85-
100 | 98-
100 | | | | | | Culture | Special | - | 100 | | | | | | PCR (1-100 parasites / μl of blood) | Special | 95-
100 | 95-
100 | | Microscopic examination of malarial parasites is considered **GOLD Standard** of diagnosis. Serological tests are approved only for emergencies and places where microscopy is not possible. | | gondii oocysts s
in cat's fa
vertical t
mission, | Ingestion of oocysts shed | ts shed s faeces, affected tissues tissues | IgM ELISA | Routine | >93 | 90-
100 | |-----------------------------------|--|-------------------------------------|---|--|------------------|------------|------------| | | | in cat's faeces,
vertical trans- | | IgE ELISA | Routine | 76 | 98 | | | | mission, rare-
ly infected | | IgG ELISA | Routine | >99 | >99 | | | | blood/ organ | | Western Blot | Special | 99 | 100 | | | donation | donation | | PCR for
prenatal
diagnosis | Special | 90-92 | >99 | | | | | PCR of pla-
cental tissue | Special | 42-71 | 98-
100 | | | | | | PCR (Blood,
CSF) in
cerebral toxo-
plasmosis | Special | 33-83 | 98-
100 | | | | | | IFN-γ release
assay | Special | 94 | 98 | | | PCR is considere | ed the GOLD St a | andard for Diagi | nosis. | | | | | | Fungal tropical | diseases | | | | | | | | Cryptococco-
sis ²³ | Cryptococcus neoformans Inhalation or inoculation of basidiospores | inoculation of | CSF, Blood,
Serum,
Urine,
Sputum | Microscopy
(India ink
preparation) | Routine | 50-90 | >90 | | | | | | Culture | Rou- | 50-90 | 100 | | | | | | GOLD Stan-
dard | tine/
Special | | | | | | | Cryptococ-
cal antigen
detection | Routine | 83-97 | 93-
100 | | | | | | Antibody
detection by
ELISA | Routine | 80-85 | 100 | | | | | | | PCR | Special | 92-
100 | 100 | Depending on the provisional clinical diagnosis of the abovementioned diseases, relevant investigations can be done according to the available facilities. ## **References:** - Gerald L. Mandell, John E. Bennett, Raphael Dolin, eds. Mandell, Bennett, & Dolin: Principles and Practice of Infectious Diseases, 6th ed., 2005 Churchill Livingstone, An Imprint of Elsevier. United States of America. - 2. Reller LB, Weinstein MP, Murdoch DR. Diagnosis of Legionella Infection. Clin Infect Dis 2003; 36 (1): 64-9. - Limmathurotsakul D, Turner EL, Wuthiekanun V, Thaipadungpanit J, Suputtamongkol Y, Chierakul W, et al. Fool's Gold: Why Imperfect Reference Tests Are Undermining the Evaluation of Novel Diagnostics: A Reevaluation of 5 Diagnostic Tests for Leptospirosis Clin Infect Dis 2012; 55 (3): 322-31. - Limmathurotsakul D, Chantratita N, Teerawattanasook N, Piriyagitpaiboon K, Thanwisai A, Wuthiekanun V, et al. Enzyme-Linked Immunosorbent Assay for the Diagnosis of Melioidosis: Better Than We Thought. Clin Infect Dis 2011; 52 (8): 1024-8. - Tunkel AR, Hartman BJ, Kaplan SL, Kaufman BA, Roos KL, Scheld WM, et al. Practice Guidelines for the Management of Bacterial Meningitis. Clin Infect Dis 2004; 39: 1267-84. - Vaidya VM, Malik SV, Kaur S, Kumar S, Barbuddhe SB. Comparison of PCR, immunofluorescence assay, and pathogen isolation for diagnosis of q fever in humans with spontaneous abortions. J Clin Microbiol 2008;46(6):2038-44. - 7. Pai M, Ramsay A, O'Brien R. Evidence-Based Tuberculosis Diagnosis. PLoS Med 2008; 5(7): e156. - 8. Wain J, Hosoglu S. The laboratory diagnosis of enteric fever. J Infect Developing Countries 2008; 2(6):421-5. - La Scola B, Raoult D. Laboratory Diagnosis of Rickettsioses: Current Approaches to Diagnosis of Old and New Rickettsial Diseases. J Clin Microbiol 1997; 35: 2715–27. - WHO recommendations on the use of rapid testing for influenza diagnosis. http://www.who.int/influenza/ resources/documents/RapidTestInfluenza_WebVersion.pdf. Accessed: 23/09/2014. - 11. Yap G, Pok KY, Lai YL, Hapuarachchi HC, Chow A, Leo YS, et al. Evaluation of Chikungunya Diagnostic Assays: Differences in Sensitivity of Serology Assays in Two Independent Outbreaks. PLoS Negl Trop Dis 2010; 4(7): e753. - 12. Vanhomwegen J, Alves MJ, Avši T, Županc, Bino S, Chinikar S, et al. Diagnostic assays for Crimean-Congo Hemorrhagic Fever. Emerg Infect Dis 2012; 18(12): 1958-65. - 13. Peeling RW, Artsob H, Pelegrino JL, Buchy P, Cardosa MJ, Devi S, et al. Evaluation of diagnostic tests: dengue. Nat Rev Microbiol 2010; 8(12): S30-S37. - Machado AM, de Figueiredo GG, dos Santos GS, Figueiredo LTM. Laboratory Diagnosis of Human Hantavirus Infection: Novel Insights and Future Potential. Future Virol 2009; 4(4): 383-9. - Wu X, Zhou C, Huang WJ, Qi ZB, Liang ZL, Li HM, et al. Sensitivity and specificity of 4 domestic ELISA kits for detection of hepatitis B virus markers. Zhonghua Liu Xing Bing Xue Za Zhi. 2008; 29(9): 915-8. - Wilkins T, Malcolm JK, Raina D, Schade RR. Hepatitis C: Diagnosis and Treatment. Am Fam Physician 2010; 81(11): 1351-7. - Myint KSA, Endy TP, Gibbons RV, Laras K, Mammen MP, Sedyaningsih ER, et al. Evaluation of Diagnostic Assays for Hepatitis E Virus in Outbreak Settings. J Clin Microbiol 2006; 44(4): 1581–3. - HIV assays: operational characteristics. Report 16: rapid assays. World Health Organization. Available at: http://www.who.int/diagnostics_laboratory/publications/Report16_final.pdf. Accessed: 26/09/2014. - 19. Tanyuksel M, Petri WA. Laboratory Diagnosis of Amebiasis. Clin Microbiol Rev 2003; 16(4): 713–29. - Gatti S, Gramegna M, Klersy C, Madama S, Bruno A, Maserati R, et al. Diagnosis of visceral leishmaniasis: the sensitivities and specificities of traditional methods and a nested PCR assay. Ann Trop Med Parasitol 2004; 98(7): 667-76. - Duggal S, Chugh TD. 'Laboratory Diagnosis of Falciparum Malaria'. In: "Handbook on Falciparum Malaria", Anupam Sachdev, Nita Radhakrishnan, Manas Kalra, eds; First edition 2014 pp. 141-58. Jaypee Brothers Medical Publishers (P) Ltd, New Delhi. - Robert-Gangneux F, Dardé ML. Epidemiology of and Diagnostic Strategies for Toxoplasmosis. Clin Microbiol Rev 2012; 25(2): 264-96. - Saha DC, Xess I, Biswas A, Bhowmik DM, Padma MV. Detection of Cryptococcus by conventional, serological and molecular methods. J Med Microbiol 2009; 58:1098-105.