The pathophysiology of acute myocardial infarction (MI), ischemic stroke, and limb gangrene is centered around arterial thrombosis. Arterial thrombosis is the complex interplay between platelet activation, aggregation and adhesion and the coagulation system with fibrin formation. Due to the central role of platelets in arterial thrombogenesis, the treatment focuses on drugs that block platelet function.

ROLE OF PLATELETS IN HEMOSTASIS

The initial response of the hemostatic system to tissue or endothelial injury is to produce a platelet plug (primary hemostasis). Platelets have multiple surface receptors, which when stimulated, produce a shape change involving the energy-dependent actin-myosin system. Principal among these receptors are the glycoprotein Ib (GpIb) receptor, which binds to von Willebrand factor (vWF) in response to endothelial injury. Additionally, there are receptors for adenosine diphosphate (ADP), thrombin, and thromboxane A2. With the shape change, the surface of the platelet also changes, leading to expression of a second binding site, the glycoprotein IIb/IIIa (GpIIb/IIIa) receptor. GpIIb/IIIa receptors bind fibrinogen to provide bridging between adjacent platelets. The surface of the platelet also expresses binding sites for factor V, an essential cofactor in the generation of thrombin (Figure 1).

ANTIPLATELET AGENTS

Platelets can be activated in a number of ways. The targets and agents in clinical use or development are shown in figure below.

ORAL ANTIPLATELET AGENTS

I. Aspirin: Acetylsalicylic acid (ASA) is a derivative of salicylic acid that works by inhibiting the enzyme prostaglandin H-synthase also known as cyclooxygenase (COX).

Mechanism of Action: Prostaglandin H-synthase 1 and 2 (also known as COX 1 and 2) catalyze the conversion of arachidonic acid to prostaglandin H2 (PGH2). Human platelets and vascular endothelial cells convert COX2 primarily to thromboxane A2 (TXA2) and prostaglandin I2 (PGI2). TXA2 induces platelet aggregation and vasoconstriction, whereas PGI2 inhibits platelet aggregation and induces vasodilatation. Platelet TXA2 synthesis is reduced by about 98% following ASA administration.

Clinical Uses: ASA is used in primary as well as secondary prevention of CAD, Ischemic stroke and Peripheral Vascular disease. Also ASA has been studied in a wide range of diseases ranging from preeclampsia, polycythemia vera to bowel cancer, usually at doses of 50 to 100 mg/day. The mechanisms of action for the observed benefits in these conditions remain to be elucidated.

Use of the lowest effective dose (50-100 mg/day for long-term treatment) is currently the most appropriate strategy to maximize efficacy and minimize toxicity.

Side Effects of Aspirin

a. Bleeding: Bleeding is dose-dependent in patients treated for stroke and with acute coronary syndrome. A retrospective subgroup analysis of the relationship between the aspirin dose and risk of major bleeding found that a dose of 100 mg/day to have the lowest rate of major or life-threatening bleeding complications. Bleeding risks increased with increasing ASA dose with or without clopidogrel.

b. Hypersensitivity: The mechanism of Aspirin Hypersensitivity is upregulation of the 5-Lipoxygenase pathway leading to increased leukotrienes. The effects include bronchospasm, urticaria, rhinitis, angioedema or anaphylaxis. Aspirin Sensitive Ashtma includes a triad of Bronchial Asthma, Aspirin Sensitivity and Nasal Polyps.

c. Gastrointestinal: Dyspepsia (epigastric distress, heartburn, nausea, ulcers), Gastric mucosal lesions, Peptic ulcers, Hemorrhage and Perforation are some of the gastrointestinal side effects of aspirin.
II. Dipyridamole: Mechanism of Action:
Dipyridamole is a pyrimidopyrimidine derivative with vasodilator and antiplatelet properties. The mechanism of action of dipyridamole as an antiplatelet agent involves increased intracellular cyclic adenosine monophosphate (cAMP), which inhibits the platelet shape change. Increased cAMP concentration is due to two mechanisms: (1) inhibition of phosphodiesterase and (2) blockade of uptake of adenosine (which acts at adenosine A2 receptors to stimulate platelet adenylyl cyclase and thus increase cAMP).

Clinical Uses: Though early clinical trials questioned the efficacy of dipyridamole, recent studies have suggested significant benefit with new formulation. In a study addition of modified-release dipyridamole 200 mg twice daily to ASA 25 mg twice daily was associated with a 22% relative risk reduction of major vascular events compared with ASA alone. In another study of ASA (30-325 mg/day) with or without dipyridamole (200 mg twice daily) in patients within 6 months of a transient ischemic attack (TIA) or minor stroke showed 20% reduction of a composite of major vascular events by the combined treatment.

III. Platelet Receptor Inhibitors: Purigenic Receptors:
There are three known subtypes of ADP receptors on platelets: P2X₁, P2Y₁, and P2Y₁₂. Sustained ADP-induced platelet aggregation requires coactivation of P2Y₁ and P2Y₁₂ receptors. The P2Y₁ receptor acts by inhibiting adenylyl cyclase via a Gi protein and potentiates dense granule secretion, procoagulant activity, and platelet aggregation. Without continued P2Y₁₂ activation, aggregated platelets disaggregate. Inhibition of the P2Y₁₂ receptor is a major target for anti-platelet drug development.

A. Thienopyridines: Thienopyridines which are CLOPIDOGREL and PRASUGREL (Ticlopidine not in use now), selectively inhibit ADP-induced platelet aggregation with no direct effects on arachidonic acid metabolism. The thienopyridines do not act directly, but are administered as prodrugs requiring hepatic transformation. The active metabolites of both clopidogrel and prasugrel couple through a covalent disulfide bond to P2Y₁₂ receptors rendering the receptor unresponsive to ADP, and as the bond is covalent it causes irreversible inhibition (Figure 2).

B. Adenosine Diphosphate Analogues
i. Ticagrelor: Ticagrelor is a cyclopentyltriazolopyrimidines, and is an oral P2Y₁₂ receptor antagonist that exerts antiplatelet effects by blocking ADP. Ticagrelor is not a prodrug, and the block is reversible. The parent drug is metabolized, principally by CYP 3A to about 10 metabolites. The major metabolite, AR-C124910XX, formed by O-deethylation, is as active as ticagrelor in inhibiting ADP-induced platelet aggregation.

ii. Cangrelor: Cangrelor is an intravenous P2Y₁₂ purinoreceptor antagonist. Cangrelor is not a prodrug and produces concentration-dependent inhibition of thrombin receptor-activating, peptide-induced aggregation in human platelets. Cangrelor was studied in two large-scale phase 3 studies that were ended early as it did not show any clinical efficacy needed for regulatory approval.

Clinical Use in CAD
Clopidogrel, Prasugrel and Ticagrelor are indicated in patients with acute coronary syndromes, which includes patients with unstable angina or non-ST-elevation myocardial infarction (NSTEMI) and patients with ST-elevation myocardial infarction (STEMI) when managed with primary or delayed percutaneous coronary intervention (PCI) (Table 1).

Specific Regimens in CAD Patients
A. Antiplatelets in Stable Ischemic Heart Disease: Aspirin at dose of 75 to 162 mg daily, is preferred for secondary prevention in the absence of recent intracoronary stenting.

Clopidogrel may be substituted for aspirin, in patients intolerant or resistant to aspirin.
There is no significant benefit in adding clopidogrel to aspirin.

B. Antiplatelets in ACS - NSTEMI: All patients should be given 162 to 325 mg of uncoated aspirin, which should be taken as chewed or crushed, as soon as possible after the diagnosis has been made.

All patients should receive P2Y₁₂ receptor inhibitor in addition to aspirin.

For most patients going for an early invasive strategy, ticagrelor 180 mg as loading dose is preferred choice.

For patients in whom there is a concern about a need for urgent coronary artery bypass graft surgery, the P2Y₁₂ receptor blocker may be given after diagnostic coronary angiography.

If the P2Y₁₂ receptor blocker is given after angiography, ticagrelor (180 mg as loading dose followed by 90mg twice a day as maintainence) or prasugrel (60 mg as loading dose followed by 10 mg once a day as maintainence dose) should be given.

If ischemia guided (conservative) strategy is used, ticagrelor is preferred. Clopidogrel (600mg loading dose followed by 75mg once a day) can also be used.

Aspirin at dose of 75-100 mg should be continued indefinitely for secondary prevention.

For patients on ticagrelor, aspirin dose should be <100 mg.

Anti-Platelet use In STEMI: Aspirin should be given to all patients at a loading dose of 162-325mg in uncoated form and to be chewed or crushed. Aspirin at maintainence dose should be continued thereafter.

P2Y12 receptor blocker should be added but its choice depends on choice of reperfusion strategy.

In patients undergoing fibrinolytic therapy, only clopidogrel is to be used.

In patients undergoing primary PCI, prasugrel or ticagrelor should be used rather than clopidogrel.

In patients undergoing Fibrinolysis - Loading dose of clopidogrel 300mg can be given, followed by 75mg once a day. In patients>75 years of age, 75mg once a day without loading dose can be given.

Duration of Anti-Platelet Therapy in Patients with CAD
The addition of a P2Y12 inhibitor to aspirin and prolongation of DAPT requires an assessment of the risk benefit ratio of ischemic risk versus the bleeding risk.

Clinical Use in TIA or Stroke
1. In TIA or Acute Ischemic Stroke, Aspirin and Clopidogrel are given as 300mg loading dose each (to be given within 24-48 hours, not to be loaded if thrombolysed), followed by 75mg each as once a day for 3 weeks. Aspirin is continued thereafter.

2. Clopidogrel has not been proved to be superior to Aspirin for secondary prevention, no dual antiplatelet therapy.

Table 1: Basic Pharmacology and Safety aspects of P2Y₁₂ Receptors Antagonists

<table>
<thead>
<tr>
<th></th>
<th>Clopidogrel</th>
<th>Prasugrel</th>
<th>Ticagrelor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical Structure</td>
<td>Thienopyridine</td>
<td>Thienopyridine</td>
<td>Cyclopentyltirazolopyridine</td>
</tr>
<tr>
<td>Prodrug</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Administration</td>
<td>Oral</td>
<td>Oral</td>
<td>Oral</td>
</tr>
<tr>
<td>Time to peak effect</td>
<td>Dose dependent</td>
<td>2 hr</td>
<td>2 hr</td>
</tr>
<tr>
<td>% Platelet Inhibition 2 hrs after loading dose</td>
<td>40-50%</td>
<td>70-90%</td>
<td>80-90%</td>
</tr>
<tr>
<td>Half Life</td>
<td>6 hr</td>
<td>8 hr</td>
<td>6-12 hr</td>
</tr>
<tr>
<td>Time to recovery of platelet inhibition</td>
<td>4-5 days</td>
<td>2-4 days</td>
<td>2-3 days</td>
</tr>
<tr>
<td>Reversible</td>
<td>5 days</td>
<td>7 days</td>
<td>24-48 hr</td>
</tr>
<tr>
<td>Indications</td>
<td>ACS and Stable CAD undergoing PCI</td>
<td>ACS undergoing PCI</td>
<td>ACS (full spectrum)</td>
</tr>
<tr>
<td>Safety with prior CVA</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Non-CABG bleeding</td>
<td>Increased risk</td>
<td>Increased risk</td>
<td>Increased risk</td>
</tr>
<tr>
<td>CABG bleeding</td>
<td>Increased risk</td>
<td>Reduced risk</td>
<td></td>
</tr>
</tbody>
</table>
| Side Effects | Bleeding | Bleeding. Caution in 1. Weight <60 kg, 2. Age >75 years, 3. Prior CVA | Bleeding | Dyspnoea | Sinus pauses

There is no significant benefit in adding clopidogrel to aspirin.
Table 2: Major Clinical studies on use of P2Y12 Receptor Inhibitors

<table>
<thead>
<tr>
<th>Trial</th>
<th>Patients enrolled</th>
<th>Treatment arms</th>
<th>Primary endpoint</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cure</td>
<td>Patients with ACS without STEMI</td>
<td>Aspirin plus Clopidogrel vs Aspirin plus Placebo</td>
<td>CV deaths, nonfatal MI, or Stroke</td>
<td>9.3% vs 11.4%, RR 0.80, p<0.001</td>
</tr>
<tr>
<td>Triton-TIMI 38</td>
<td>ACS undergoing PCI</td>
<td>Aspirin plus Prasugrel vs Aspirin plus Clopidogrel</td>
<td>CV death, nonfatal MI, or nonfatal Stroke at 14.5 months</td>
<td>9.9% vs 12.1% HR 0.81, 95% CI 0.73-0.90, P<0.001</td>
</tr>
<tr>
<td>Triology – ACS</td>
<td>Medically managed NSTE-ACS</td>
<td>Aspirin plus Prasugrel vs Aspirin plus Clopidogrel</td>
<td>CV death, MI, or Stroke at 17 months in patients age <75 years</td>
<td>13.9% vs 16% HR 0.91, 95% CI 0.79-1.05, p<0.21</td>
</tr>
<tr>
<td>ACCOAST</td>
<td>Patients with NSTEMI scheduled for CAG</td>
<td>Pretreatment with Prasugrel 30 mg vs placebo</td>
<td>CV death, MI, Stroke, GP IIb/IIIa inhibitor bailout, or urgent revascularization at 7 days</td>
<td>10% vs 9.8%, HR 1.02, 95% CI 0.84-1.25, p<0.81</td>
</tr>
<tr>
<td>Plato</td>
<td>Patients with ACS</td>
<td>Aspirin plus Ticagrelor vs Aspirin plus Clopidogrel</td>
<td>Death from vascular causes, MI, or Stroke at 12 months</td>
<td>9.8% vs 11.7%, HR 0.84, 95% CI 0.77-0.92, p<0.001</td>
</tr>
<tr>
<td>Pegasus TIMI 54</td>
<td>Patients with a MI 1-3 years ago</td>
<td>Ticagrelor 90 mg BD plus Aspirin, Ticagrelor 60 mg BD plus Aspirin, Placebo plus Aspirin</td>
<td>Cardiovascular Death, MI or Stroke at 3 years</td>
<td>Ticagrelor 90 mg vs Placebo – HR 0.85, 95% CI 0.75-0.96 (p=0.008); Ticagrelor 60 mg vs Placebo HR 0.84, 95% CI 0.74-0.95 (p=0.004)</td>
</tr>
<tr>
<td>Champion-Phoenix</td>
<td>Patients undergoing PCI</td>
<td>Aspirin plus Clopidogrel plus cangrelor vs Aspirin plus Clopidogrel</td>
<td>Death from any cause, MI, Ischemia-driven revascularisation, and Stent thrombosis at 48 hours</td>
<td>4.7% vs 5.9%, OR 0.78, 95% CI 0.66-0.93, p=0.005</td>
</tr>
</tbody>
</table>

3. Aspirin and Dipyridamole combination has been proved to be superior to Aspirin alone in secondary prevention.

4. Other anti-platelets have not been studied in stroke patients.

Side Effects of P2Y12 Receptor Blockers

a. Bleeding: The principal adverse outcome related to the use of thienopyridines is bleeding. The CURE study showed similar rates for nonfatal and major hemorrhage but highlighted dose-dependent effects of ASA on rates for bleeding, and also an effect of age in clopidogrel-treated patients. In the TRITON TIMI38 study, bleeding rates with prasugrel were markedly higher than with clopidogrel (Tables 2 and 3). Clopidogrel: Also among clopidogrel-treated subjects in TRITON-TIMI 38, carriers of the CYP 2C19 variant had a relative increase of 53% in the risk of death from cardiovascular causes, MI, or stroke compared with noncarriers (12.1% vs. 8.0%); and an increase by a factor of 3 in the risk of stent thrombosis (2.6% vs. 8%). A parallel study of prasugrel found no effect of this polymorphism on pharmacodynamic or clinical outcomes.

Prasugrel: is contraindicated in (1) patients with a history of prior TIA or stroke, (2) for patients 75 years of age or older due to an increased incidence of fatal and intracranial bleeding, and (3) in patients weighing less than 60 kg (although not absolutely contraindicated, a higher rate of bleeding is noted because the active metabolite of prasugrel is 30-
Table 3: Duration of Antiplatelet Therapy in Subsets of CAD

<table>
<thead>
<tr>
<th>Subset of CAD</th>
<th>Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>In all CAD patients</td>
<td>Aspirin therapy 75 – 100 mg daily. Continued Indefinitely; unless there are contraindications like bleeding or hypersensitivity</td>
</tr>
<tr>
<td>Stable ischemic heart disease after PTCA:</td>
<td>DAPT with Aspirin and Clopidogrel should be given for at least 6 months (Class I)</td>
</tr>
<tr>
<td>After Drug –eluting stent (DES)</td>
<td>DAPT with Aspirin and Clopidogrel should be given for at least 1 month (Class I)</td>
</tr>
<tr>
<td>After Bare-MetaStent (BMS)</td>
<td>DAPT may be continued for longer if tolerated well. (Class IIb)•</td>
</tr>
<tr>
<td>After DES / BMS who have tolerated DAPT without a bleeding complication and who are not at high bleeding risk</td>
<td>DAPT may be continued for longer if tolerated well. (Class IIb)•</td>
</tr>
<tr>
<td>Acute Coronary Syndrome (ACS) after PCI</td>
<td>Continued of DAPT with P2Y12 inhibitors (Clopidogrel, Prasugrel or Ticagrelor) for longer than 12 months, for 18-24 months may be reasonable (Class IIb).</td>
</tr>
<tr>
<td>ACS# after PCI with DES / BMS</td>
<td>Reasonable to use Ticagrelor in preference to Clopidogrel for maintenance P2Y12 inhibitor therapy (Class IIa)</td>
</tr>
<tr>
<td>or</td>
<td>Reasonable to choose Prasugrel over Clopidogrel for maintenance P2Y12 inhibitor therapy (Class IIa), if not at high risk of bleeding and no prior stroke</td>
</tr>
<tr>
<td>UA / NSTEMI on Medical management (without PCI)</td>
<td>P2Y12 inhibitor therapy should be resumed after CABG to complete 12 months of DAPT therapy after ACS (Class I).</td>
</tr>
<tr>
<td>ACS# - Post coronary Artery Bypass Grafting (CABG)</td>
<td>Delayed 30 days after BMS implantation</td>
</tr>
<tr>
<td>Elective Noncardiac Surgery</td>
<td>Delayed 6 months after DES implantation</td>
</tr>
</tbody>
</table>

#ACS include unstable angina (UA), Non-ST elevation myocardial infarction (NSTEMI) or ST elevation myocardial infarction (STEMI); • A new risk score (the “DAPT score”), derived from the Dual Antiplatelet Therapy study, may be useful to decide about prolonged DAPT in patients treated post PCI

40% higher in these patients. Prasugrel can be used in a dose of 5 mg daily).14

Ticagrelor - In the PLATO study, the two treatment groups did not differ significantly in the rates of CABG-related major bleeding (11.6% and 11.2%). However, there was a higher rate of non-CABG-related major bleeding.

b. Adenosine Related Side Effects of Ticagrelor - Ticagrelor is metabolized to adenosine and administration is associated with related effects like of

- **Dyspnea (10%-20%)**, but led to its withdrawal in only 1% of cases, and
- **Sinus Pauses lasting more than 3 seconds (6%)** were noted on holter but were asymptomatic and did not require pacemaker implantation.

Anti-Platelet Resistance

Aspirin Resistance

Patients developing recurrent ischemic inspite being on adequate doses of aspirin can be attributed to aspirin resistance, that encompasses a wide variety of factors that contribute to this phenomenon (Figure 3).16

One systematic review of 15 studies revealed a wide range in estimates of the prevalence of laboratory aspirin resistance (5% to 65%). Studies have shown increasing urinary thromboxane levels in aspirin resistance patients and was associated with combined endpoint of MI, stroke and death.

Clopidogrel Resistance

Clopidogrel is a prodrug and requires its conversion to active metabolite through CYP2C19 isoenzyme. Among healthy volunteers, Mega and colleagues demonstrated a 30% prevalence of the CYP2C19 allele, a genetic polymorphism that confers loss of function and
hence a reduction of the active metabolite of clopidogrel. In retrospective analysis of TRITON-TIMI 38 trial, there was a 54% increase in the risk of the composite endpoint of myocardial infarction, cardiovascular death, or stroke among carriers of at least one CYP2C19 allele over that of noncarriers. Presence of the CYP2C19 allele was also associated with a threefold increase in the risk of stent thrombosis.

Optimal management of patients with clopidogrel resistance is not known. Ongoing GRAVITAS study may add important information in such patients.

INTRA-VENOUS ANTI-PLATELET AGENTS:

Glycoprotein IIB/IIIa antagonists (Table 4)

GpIIb/IIIa is a member of a family of adhesive receptors (integrins) composed of α and β transmembrane proteins and an estimated 50,000 to 80,000 GpIIb/IIIa receptors on the surface of each platelet. Platelet activation results in a change in the shape of the receptor, which greatly increases its normal low affinity for fibrinogen and vWF.

Two types of GpIIb/IIIa receptor antagonists are available: competitive (a peptide and a peptidomimetic).

Clinical Use

Platelet GpIIb/IIIa antagonist should be used in patients with moderate-to high-risk ACS in whom catheterization and PCI are planned (ACC/AHA guideline - class I, level A).

Abxicimab has been found to superior to tirofiban and eptifibatide as shown in TARGET, IMACT II and RESTORE trials and it has also been found to superior in diabetic patients and safer in renal failure patients.

Side Effects

a. Bleeding – most common site is vascular access site.

b. Thrombocytopenia – Incidence is 1.1-5.6% and is immune mediated.

EMERGING DEVELOPMENT IN ANTI-PLATELET THERAPY

Protease Activated Receptor 1 (Thrombin receptor) – Compounds have been developed that inhibit the ligand-binding site on PAR-1, which is a G protein–coupled receptor known as protease activated receptor-1 (PAR-1) receptor for thrombin. Two compounds which are in development are Atofizar and Voropaxar which achieve 90% and 80% platelet inhibition respectively.

Table 4: Basic Pharmacokinetics of GpIIb/IIIa antagonists

<table>
<thead>
<tr>
<th>Drug</th>
<th>Dosage</th>
<th>Chemistry</th>
<th>Plasma Half Life</th>
<th>Biologic Half Life</th>
<th>Clearance Mechanism</th>
<th>% Inhibition of platelet aggregation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abxicimab</td>
<td>Bolus: 0.25 mg/kg IV</td>
<td>Monoclonal antibody</td>
<td>10 min</td>
<td>12-24 hr</td>
<td>Reticulo-endothelial system</td>
<td>>80%</td>
</tr>
<tr>
<td></td>
<td>Maintenance: 0.125 mcg/mkg/min (max 10 mcg/min for 12 hours)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tirofiban</td>
<td>Bolus: 0.25 mcg/kg IV in 5 min</td>
<td>Peptidomimetic</td>
<td>2 hr</td>
<td>4-8 hr</td>
<td>Renal</td>
<td>>90%</td>
</tr>
<tr>
<td></td>
<td>Maintenance: 0.15 mcg/kg/min infusion for 18 hours</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eptifibatide</td>
<td>Bolus: 180 mcg/kg IV</td>
<td>Polypeptide</td>
<td>2.5 hr</td>
<td>4-6 hr</td>
<td>Renal</td>
<td>85% after bolus, >90% during steady state infusion</td>
</tr>
<tr>
<td></td>
<td>Maintenance: 2 mcg/kg/min infusion for 72 hours</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
REFERENCES

19. Topol EJ. Comparison of two platelet glycoprotein IIb/IIIa inhibitors, tirofiban and abciximab, for the prevention of ischemic events with percutaneous coronary revascularization. NEJM 2001; 344:1888-94.

