PUO (FUO) should be reserved for prolonged febrile illnesses without an established etiology despite intensive evaluation and diagnostic testing. FUO remains a challenging diagnostic problem with all the physicians. With the development of better diagnostic techniques, the cause of fever is often found before three weeks of illness and therefore only more difficult to diagnose cases meet the definition of FUO as given in Table 1.

The etiologies of the PUO have changed over time because of shifting disease patterns and new diagnostic techniques. In general, infection accounts for about 20–25% of cases of PUO in Western countries; next in frequency are neoplasms and noninfectious inflammatory diseases (NIIDs). In tropical and subtropical areas (INDIA), infections are a much more common cause of PUO, while the proportions of cases due to NIIDs and neoplasms are similar. Up to 50% of cases caused by infections in patients with PUO outside Western nations are due to tuberculosis, which is a less common cause in the United States and Western Europe.

CAUSES

More than 200 causes of PUO have been described in literature. The causes for PUO are extensive, but it is important to remember that PUO is far more often caused by an atypical presentation of a rather common disease than by a very rare disease.

1. **Bacterial:** Tuberculosis, typhoid fever and other salmonellosis, Abdominal abscess, appendicitis, cholangitis, cholecystitis, endocarditis, epideral abscess, infected vascular catheter, infected joint prosthesis, infected vascular prosthesis, infectious arthritis, intracranial abscess, liver abscess, lung abscess, mastoiditis, osteomyelitis, pelvic inflammatory disease, prostatitis, pyelonephritis, urinary tract infection.

2. **Unusual infections:** Actinomycosis, atypical mycobacterial infection, brucellosis, Campylobacter infection, Chlamydia pneumonia infection, chronic meningococcemia, gonococccemia, legionelllosis, leptospirosis, Lyme disease, rickettsiosis, syphilis, tick-borne relapsing fever (Borrelia duttonii), Whipple’s disease (Tropheryma whipplei), yersiniosis.

3. **Parasitic:** Malaria, Amebiasis, babesiosis, echinococcosis, malaria, schistosomiasis, strongyloidiasis, toxoplasmosis, trypanosomiasis.

4. **Viral:** Dengue, coxsackie virus infection, cytomegalovirus infection, Epstein-Barr virus infection, hepatitis (A, B, C, D, E), herpes simplex, HIV infection, parvovirus infection.

5. **Non infectious autoimmune diseases:** Ankylosing
CHAPTER 3

17

spondylitis, antiphospholipid syndrome, autoimmune hemolytic anemia, autoimmune hepatitis, Behçet’s disease, cryoglobulinemia, dermatomyositis, Felty syndrome, gout, mixed connective-tissue disease, polymyositis, pseudogout, reactive arthritis, relapsing polychondritis, rheumatic fever, rheumatoid arthritis, Sjögren’s syndrome, systemic lupus erythematosus.

7. Granulomatous :Sarcoidosis

9. Malignancy:

b. Solid tumours - most solid tumors and metastases can cause fever. Those most commonly causing PUO are breast, colon, hepatocellular, lung, pancreatic, and renal cell carcinomas

10. Defective thermoregulatory causes: Brain tumor, cerebrovascular accident, encephalitis, hypothalamic dysfunction

STUDIES

Evaluation

The most important and primary approach to these patients are thorough history taking, proper clinical examination and obligatory investigations. PDCs are defined as all localizing signs, symptoms, and abnormalities potentially pointing toward a diagnosis are given in Table 2.

History: The history should include information about the fever pattern (continuous, intermittent, remittent or recurrent) and duration, previous medical history, present and recent drug use, family history, sexual history, recent and remote travel, unusual environmental exposures associated with travel or hobbies, and animal contacts.

One of the first steps should be to rule out factitious or fraudulent fever, particularly in patients without signs of inflammation in laboratory tests. All medications, including nonprescription drugs and nutritional supplements, should be discontinued early in the evaluation to exclude drug fever.

Physical examination: special attention to the eyes, lymph nodes, temporal arteries, liver, spleen, sites of previous surgery, entire skin surface, and mucous membranes.

In patients without PDCs or with only misleading PDCs, fundoscopy by an ophthalmologist may be useful in the early stage of the diagnostic workup.

FDG PET SCAN

FDG-PET is based on the increased uptake of FDG (fluorodeoxyglucose) by activated inflammatory cells, which occurs in infection, NIID and malignancy. FDG-PET/CT is a non-invasive imaging technique with high diagnostic yield and should therefore be performed early in the investigation of FUO. FDG-PET was helpful in 40% and FDG-PET/CT in 54% of cases. But in countries like India where FDG PET scans are not readily available, relatively more cases of PUO remains undiagnosed.

TREATMENT

The emphasis in patients with PUO is on continued observation and examination with avoidance of “Shotgun” empirical therapy. However, vital signs instability or neutropenia is an indication for empirical...
Approach to patients of pyrexia of prolonged duration

Patients with temperature >101°F on several occasions

↓

Comprehensive history and physical examination looking for diagnostic clues

↓

Clues found?

Yes → Order appropriate tests

No → Perform minimum diagnostic work up

- Complete blood count, chest radiography, urinalysis, urine culture
- ESR, CRP, electrolyte panel, liver enzymes
- LDH, creatinine kinase, Blood cultures, ANA, RF, serological testing (EBV, CMV, HIV)
- PPD test, interferon gamma assay (TB), abdominal and pelvic USG or CT imaging

↓

No → Diagnosis evident?

Yes → Complete appropriate evaluation and treatment

↓

Meets the definition of fever of unknown origin

↓

Additional diagnostic work up

- Measure ferritin level
- Cryoglobulins
- Anti neutrophilic cytoplasmic antibodies
- Serum protein electrophoresis
- Complement studies
- Thyroid testing
- At last, tissue biopsy (lymph node, liver temporal artery, bone marrow) or 18 FDG PET scan

therapy with fluoroquinolone plus piperacillin. If Mantoux test is strongly positive and granulomatous disease is suggested (and sarcoid seems unlikely) then a therapeutic trial for tuberculosis should be undertaken with treatment continued for up to 6 weeks. A failure of the fever to respond over this period suggests other alternative diagnosis. A response of rheumatic fever and still’s disease to aspirin and NSAIDs may be dramatic.

Effects of glucocorticoids on temporal arteritis and polymyalgia rheumatica and granulomatous hepatitis are equally dramatic. Steroids are not to be given early in the course as they may mask various PDCs of the diseases. In patients with a suspected autoinflammatory disorder the interleukin-1 receptor antagonist, anakinra, can be tried. Remission of symptoms is expected within 24–48 hours. If anakinra is ineffective after two weeks of treatment,
a beneficial effect should not be expected and the drug should be stopped.

Patience, compassion, equanimity, vigilance and intellectual exibility are indispensable attributes for the clinician in dealing successfully with PUO.

PROGNOSIS

The overall prognosis of FUO is determined by the underlying disease. In patients in whom no cause of FUO can be established, prognosis is generally good and mortality is low. Up to 75% of patients experience spontaneous remission of fever, although this may take a long time. Treatment with NSAIDs or corticosteroids increases this proportion even further.

REFERENCES