Management of Non Variceal Bleed

R. K. Jain

Introduction

Non-variceal upper gastrointestinal bleeding (UGIB) remains a common and challenging emergency for gastroenterologists and general physician. The annual incidence is 50 to 150 per 100,000 of the population, and even though there have been significant improvements in endoscopic and supportive therapies, the overall mortality remains around 10%, and may even reach 35% in hospitalised patients with serious co-morbidity. Patients aged over 80 years of age now account for around 25% of all UGIB and 33% of UGIB occurring in hospitalised patients and therefore tend to account for much of the poor outcome of this condition.

Etiologies of non-variceal UGI bleeding

The major etiologies of acute non-variceal UGI bleeding are listed in Table 1. Peptic ulcer diseases accounts for most cases, followed by less common causes including mucosal erosive diseases; Mallory-Weiss tears; gastric antral vascular ectasia (watermelon stomach); angiomas; tumors; and Dieulafoys lesions. Rare causes, such as hemobilia, aortoenteric fistula and vasculitis, must be considered in the appropriate clinical situation.

Table 1: Etiology of non-variceal UGI bleeding

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Frequency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peptic ulcers</td>
<td>50</td>
</tr>
<tr>
<td>Erosions</td>
<td>25-30</td>
</tr>
<tr>
<td>Mallory-Weiss tear</td>
<td>8</td>
</tr>
<tr>
<td>Watermelon stomach</td>
<td>3.5</td>
</tr>
<tr>
<td>Carcinomas</td>
<td>1.5</td>
</tr>
<tr>
<td>Angiomata</td>
<td>1.2</td>
</tr>
<tr>
<td>Dieulafoy’s lesion</td>
<td>1.2</td>
</tr>
<tr>
<td>Hemobilia</td>
<td><1</td>
</tr>
<tr>
<td>Aorto-enteric fistula</td>
<td><1</td>
</tr>
<tr>
<td>Other</td>
<td>6-10</td>
</tr>
</tbody>
</table>

Adapted from gupta PK, Nonvariccal upper gastrointestinal bleeding. Med Clin North Am 1193;77:973-92
concomitant use of steroids and anticoagulants, age, and prior history of gastrointestinal ulcers or complications.5,6 A recent meta-analysis found that both Helicobacter pylori infection and NSAID use independently and significantly increased the risk of ulcer bleeding; moreover, when both risk factors were present, their effect on the risk of ulcer bleeding was synergistic.7

Clinical presentation

Acute blood loss from the UGI tract is manifested in three ways: (1) hematemesis, (2) melena, (3) hematochezia, with the former two being most common. Hematemesis is the vomiting of blood, which can be either fresh, bright red, or “coffee-ground” in appearance. Melena is black, tarry, and characteristically foul-smelling stool, which results from the degradation of blood during its passage through the gastrointestinal tract. Melena can result from as little as 50 to 100 mL of blood in the stomach, but is more consistently produced with 1 unit of blood.8,9 Hematochezia (maroon or bright red blood per rectum) can be a presenting symptom in nearly 15% of cases of UGI bleeding10 When arising from the UGI tract, hematochezia indicates more severe bleeding (at least 1000 mL of blood)8, and is associated with a worse prognosis.10,11,12

Severity of the bleed is dependent on the size of the vessel affected. Simple oozing is caused by damage to small submucosal vessels less than 0.1 mm in diameter. More severe arterial bleeding indicates a large vessel between 0.1 and 2 mm in diameter in the base of the ulcer has been eroded by the inflammatory process. Large ulcers arising from the posterior part of the duodenal cap can erode the gastroduodenal artery and provoke brisk bleeding.

Initial evaluation and Risk assessment

a. Pre endoscopic risk assessment: Clinical factors that are associated with poor outcome (Table-2) include hemodynamic instability on presentation; advanced age (> 60 years); presence of comorbid conditions; onset of bleeding in hospitals; hematochezia; red blood in the nasogastric lavage; and continued or recurrent bleeding.10,12-14

Several clinical scoring systems e.g. Rockall score,13 the Baylor bleeding score,15 the Cedars-Sinai Medical Center Predictive Index16 and the Blatchford score,17 have been developed to direct appropriate patient management and enable cost effective use of resources. These systems weigh a combination of clinical, laboratory and endoscopic variables to produce a score that predicts the risk of mortality, recurrent hemorrhage, need for clinical intervention or suitability for early discharge. Factors commonly associated with poor outcome from UGIB may be related to the patient’s presentation and co-morbidities, or to the behaviors of the ulcer. Risk stratification using non-endoscopic parameters has been advantage that it can be performed readily on initial presentation in the emergency department, and appropriate initial risk assessment is still possible, even if early endoscopy, which requires skilled staff and resources, is not always available.

b. Value of nasogastric aspiration and lavage: Nasogastric aspiration and lavage have traditionally been standard procedures in the diagnosis and management of UGI bleeding. Iced saline gastric lavage, once considered essential for controlling UGI bleeding, has been shown to be ineffective in achieving

<table>
<thead>
<tr>
<th>Table 2: Adverse clinical prognostic factors for UGI bleeding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age greater than 60 years</td>
</tr>
<tr>
<td>Presence of comorbid medical condition</td>
</tr>
<tr>
<td>Onset of bleeding in hospital</td>
</tr>
<tr>
<td>Hemodynamic instability on presentation</td>
</tr>
<tr>
<td>Severe hemorrhage</td>
</tr>
<tr>
<td>Red nasogastric aspirate</td>
</tr>
<tr>
<td>History of hematochezia or hematemesis</td>
</tr>
<tr>
<td>Multiple transfusion (> 5)</td>
</tr>
<tr>
<td>Need for emergency surgical intervention</td>
</tr>
<tr>
<td>Continued or recurrent bleeding</td>
</tr>
</tbody>
</table>

hemostasis and is no longer recommended. Nasogastric aspiration, however, may provide useful prognostic information. In the American Society for Gastrointestinal Endoscopy (ASGE) survey on UGI bleeding, a clear gastric aspirate on presentation was associated with a 6% mortality rate, compared with 18% when the aspirate revealed red blood, and nearly 30% when the aspirate and stool both contained red blood.

c. **Timing of endoscopy**: It is now widely accepted that upper endoscopy is the best test for determining the location and nature of the bleeding lesion, and should be performed in virtually all patients presenting with UGI bleeding. Although the optimal timing of endoscopy has not been clearly established, early endoscopy within 12-24 hours has been advocated by most Gastroenterologists to achieve prompt diagnosis, provide risk stratification, and perform therapeutic hemostasis in high-risk patients. Low-risk patients may also benefit from early endoscopy by safely avoiding unnecessary hospitalization.

d. **Stigmata of recent hemorrhage (SRH)**: The modified Forrest criteria are internationally accepted for endoscopic risk stratification of peptic ulcer bleed, (Table 3). An actively bleeding ulcer is identified in approximately 5% to 25% of patients at the time of endoscopy, and is associated with continued or recurrent bleeding in over half of all cases. It is important to distinguish spurting hemorrhage (Fig. 1) from oozing hemorrhage, because the former is associated with a significantly higher risk of recurrent bleeding. The term “nonbleeding visible vessel” is used to describe a 2-to 3 mm protuberance in the base of an ulcer (Fig. 2). The protruding structure is usually not the vessel itself, but rather an adherent sentinel clot plugging the eroded artery. The color of the protuberance may be predictive of rebleeding, with non pigmented lesion (white-pale) having a higher risk of rebleeding (71%) than red or purple lesion (38%).

Stigmata of recent hemorrhage

The NIH Consensus Conference also recommended therapy to ulcers with non-bleeding visible vessels as the risk of rebleeding approaches 50 per cent. It is debated whether ulcers covered with blood clot (Fig. 3) should be treated or left undisturbed. Laine has shown that up to one-third of blood

| Table 3: Forrest Classification (Modified) Stigmata of Haemorrhage With Risk Of Rebleed |
|---------------------------------|-----------------|
| **Risk of Bleeding** | |
| Stage Ia Spurting Vessel | 70-90% |
| Stage Ib Oozing Ulcer | 70-90% |
| Stage Ia Visible Non Bleeding Vessel | 50% |
| Stage Ib Adherent Clot | 8-20% |
| Stage III Flat Spot-Clear Base | < 5% |
clot can be mechanically removed from ulcers to uncover major stigmata of recent hemorrhage. As benefits of treatment outweigh risk of complications we favor therapy. Ulcers clearly seen with flat pigmented spot or clean bases (Fig. 4) can be left untreated as they are associated with a low risk of further bleeding.

Endoscopic Therapy

Resuscitation including stabilisation of blood pressure & restoration of intra vascular volume and management of medical co-morbidities, often in intensive care, remains the mainstay of the initial management of patients prior to endoscopy. Endoscopic hemostasis is thus the key therapeutic tool for management of all high risk cases of non-variceal bleed. In two meta-analyses comprising over 30 randomized trials involving over 2400 patients, endoscopic therapy significantly reduced rebleeding, need for emergency surgery and mortality. Bolus administration of intravenous erythromycin prior to endoscopy has been shown to clear the stomach of blood, increase the likelihood of successful hemostasis and reduce the need for subsequent intervention.

Hemostatic techniques available at the time of endoscopy could be classified as shown in Table 4. Selection of the optimal hemostatic device would depend primarily on the characteristics of the lesion, local expertise, and equipment availability and of course cost of the procedure.

Endoscopic Injection

Epinephrine: Diluted epinephrine (1:10,000) is the single most widely used agent. It causes vasoconstriction and promotes platelet aggregation without causing tissue necrosis or vessel thrombosis. Transfusion requirement, hospital stay and operative intervention are less with endoscopic injection of epinephrine. Large volume can be injected without systemic effects except in patients with hepatic decompensation.

The hemostatic mechanism of epinephrine injection has been studied using normal saline, concentrated saline, 50 per cent dextrose, absolute alcohol and pure water, the result suggests that hemostasis results from tamponade by the solvent rather than by the effect of solute. Because of its low cost,
simplicity and availability, epinephrine remains popular and forms the essential component of combination therapies.

Sclerosing agents: Ethanolamine, polidocanol and sodium tetradecyl sulfate are common sclerosants. Tissue necrosis is a problem when large volume is injected and hence they are usually used in combination with epinephrine injection37-39 after initial hemostasis with epinephrine, a sclerosant is targeted at the vessel. Sclerosants effectively stop bleeding but offer no advantage over epinephrine injection alone,40-42 conversely major complications have been reported which raise safety issue in using sclerosants.43-44

Alcohol: The usefulness of alcohol has been confirmed by several groups in ulcers with active bleeding and non-bleeding visible vessel.45 Like sclerosants, adding absolute alcohol to epinephrine offers no added advantages.46 In practice, absolute alcohol causes tissue damage and is subjected to the same limitations as other sclerosants which limit their popularity.

Procoagulants (Thrombogenic Agents)
Endoscopic injection of fibrin or bovine thrombin with or without a second agent has been shown to achieve hemostasis in bleeding peptic ulcers. Repeated daily injection of fibrin glue following treatment with dilute adrenaline in patients with active bleeding or nonbleeding visible vessel until the ulcer base is clean or covered is expensive but reduces rebleeding although not mortality rates.47

Thermal hemostatic devices
All thermal devices generate heat either directly (heater probe) or indirectly by tissue absorption of light energy (laser) or passage of electric current through tissue (multipolar probes, argon plasma coagulator). Heating leads to edema, coagulation of tissue protein and contraction of vessels resulting in a hemostatic bond.

Heater probe, bipolar and multipolar electric probes are commonly used thermal devices.48-50 Monopolar probe directs electric current through the human body and is no longer used for safety reasons. The success of contact thermal devices is based on the principle of coaptive coagulation which practically requires: (i) forceful tamponade using a larger 3.2 mm probe. (ii) 15 to 25 watt power setting, and (iii) sustained coagulation with consecutive pulses for at least 8 seconds.

The only non-contact thermal techniques currently available are Argon Plasma Coagulation (APC) and laser (ND: YAG). APC involves conduction of a high frequency electric current through a beam of ionized argon gas, resulting in superficial tissue damage and coagulation. A prospective observational study of APC in 254 patients with non-variceal UGIB revealed initial hemostasis rates of 75.9\% and re-bleeding rates of 5.7\%.51

The addition of a second hemostasis techniques increased successful hemostasis to 99.6\%. The only comparative randomised trial involving APC alone with heater probe was underpowered, although rates of haemostasis, rebleeding, emergency surgery and 30 days mortality were similar for the two techniques.52 APC is especially useful for diffuse bleeding arising from a large area, bleeding owing to coagulation disorder or tumor bleeding. It has been used successfully to treat gastric antral vascular ectasis (GAVE),53 angiodysplasia and hemorrhagic telangiectasia. Treatment of bleeding ulcers with APC does not appear to confer any advantage over the heater probe for endoscopic haemostasis. ND: YAG laser therapy has been shown to be as effective than injection with adrenaline-polidocanol,54 but,
due to technical constraints of the technique, laser therapy is not routinely used in the management of non-variceal UGIB.

Mechanical hemostasis

Mechanical hemostasis with endoloops or clips, e.g. the Hemoclip has an increasing role in the control of non-variceal UGIB. Endoclips are deployed on a visible vessel to achieve vascular compression and can achieve homeostasis in up to 100% of cases. Comparative studies suggest lower rebleeding rates than adrenaline injection, ethanol or saline/adrenaline injection. The additional benefit of adrenaline with a mechanical method is unclear, although one randomised comparative study of combination epinephrine-polidocanol injection and Hemoclip versus Hemoclip alone for bleeding peptic ulcers showed clipping to be inferior to combination therapy. Two small studies have evaluated Hemoclips for control of bleeding due to Dieulafoy’s lesion, demonstrating a trend towards reduction in the need for repeat procedures. Hemoclips can be technically difficult to apply if the ulcer is relatively inaccessible, for instance high on the gastric lesser curve or on the posterior duodenal wall. In fact, application of a clip with successful hemostasis in either of these locations has been as low as 30% in published series. Rotatable, versatile endoclip that can deploy multiple and stronger clips are needed.

Endoscopic band ligation (EBI) is currently technically easier to use than endoclips and has been shown to be safe and effective for control of small lesion in a small series of acute peptic ulcer bleeding and with bleeding due to Dieulafoy’s lesions.

Combined modalities

There is trend towards combined use of two endoscopic modalities using injection and mechanical or injection and thermal probe therapy in actively bleeding peptic ulcer. Adrenaline injection and thermoagulation combined have shown lesser rebleed rates than injection alone in some studies whereas others have not been as conclusive. It is recommended by international and American Society of Gastro-Intestinal endoscopy (ASGE) guidelines also.

“Second-look” endoscopy and endoscopic re-treatment

The major challenge in applying endoscopic therapy for bleeding peptic ulcers is that hemostasis is not permanent and re-bleeding occurs in about 15-20% of the cases. Predictors of an increased risk of rebleeding and death (as well as failure of endoscopic therapy) include (i) clinical factors such as shock at the time of presentation, advanced age, co-existing illnesses, (ii) endoscopic features such as ulcer location (posterior duodenal ulcer), size of the ulcer >2cm, stigmata of recent hemorrhage and the presence of blood at the time of endoscopy as well as (iii) laboratory features such as hemoglobin < 10 g/dl and elevated blood urea levels. Endoscopic treatment would avoid the surgical risk. However, delay in establishing hemostasis may result in hypotension and adversely affect the survival. In patients with peptic ulcers and recurrent bleeding after initial endoscopic control of bleeding, endoscopic retreatment reduces the need for surgery without increasing the risk of death and is associated with fewer complications than is surgery.

Routine “second look” endoscopy, in the absence of established rebleeding or patient instability, has
Management of Non Variceal Bleed

gone out of vogue after studies showed no benefit with regards to clinically significant outcomes for unselected patient population, although there may be a role in high risk patients.

Pharmacological Therapy

In vitro studies of the effect of gastric pH on platelet aggregation and coagulation provide the rationale for acid suppression in UGIB. If gastric pH is maintained above pH 6 (by infusional PPI), platelet aggregation is optimized and fibrinolysis relatively inhibited, thereby potentially improving the likelihood of clot stability at an ulcer site. Individual trials of H2 receptor antagonists (H2RA) have generally failed to demonstrate a clinical benefit in UGIB although one meta-analysis has suggested a weak effect. A recent consensus statement suggested that the available data on H2RAs does not support their use in ulcer bleeding.

Several studies have evaluated intravenous proton pump inhibitors (PPI) for non-variceal UGIB; unfortunately, these trials are heterogeneous in terms of patient population, regimen of PPI and timing/type of endoscopic intervention, making comparisons difficult. However, meta-analysis of PPIs in non-variceal UGIB have now shown a benefit in terms of re-bleeding and need for surgery, but not for mortality. The usual intravenous regime for omeprazole therapy in the most robust studies was an 80 mg intravenous bolus of omeprazole followed by a continuous infusion of 8mg/hour for up to 72 hours. This regime resulted in a reduction of rebleeding from 22.5% to 6.7%. Subsequent studies using lower intravenous doses of omeprazole or high dose oral omeprazole also demonstrated a reduction in rebleeding rate. Further study is required to determine the optimum dose, route of administration and dosing schedule of PPI in UGIB. In the meantime, and with the evidence currently available, it seems appropriate to treat patients with high risk peptic ulcers with intravenous or high dose oral PPI after endoscopic therapy has been administered.

ASGE guidelines recommended the use of PPI prior to endoscopy for patients with bleeding peptic ulcers or in those with suspected peptic ulcer bleeding in whom endoscopy is delayed or unavailable. Oral PPI, even used at high dose, might not reliably sustain pH at a desired level of 6. The usefulness of other pharmacological therapies such as somatostatin and its analogue octreotide is still a matter of debate.

Future Directions in Endoscopy

Currently available suturing devices are somewhat awkward to use and are not suitable for management of bleeding, although the principle of suturing peptic ulcers to control bleeding is well established in surgery. Further development is required before suturing becomes possible in the endoscopic sphere.

The risks associated with application of heat to bleeding lesions are due to the requirement for tissue contact, lack of control of depth of injury and difficulty in treating multiple or diffuse lesions. Gastric freezing to achieve hemostasis during variceal and non-variceal bleeding has been possible for several decades although evidence of therapeutic benefits from the original techniques was lacking and delivery systems were clumsy. However, recent delivery of new liquid nitrogen or nitrous oxide delivery systems has made endoscopic cryotherapy feasible although still experimental. Cryotherapy using nitrous oxide relies on the Joule-Thompson effect: rapid expansion of compressed gas results in a drop in temperature of the gas. The resultant “no contact” therapy has been tested in proctitis and may also be possible in upper gastrointestinal lesions.

Radiological approach

Angiography with transcatheter embolization provides a non-operative option for patients whose acute bleeding has not been identified or controlled by endoscopy. Recent studies support the safety and effectiveness of this approach for selected patients with acute non-variceal GI hemorrhage, given the appropriate expertise.
Surgery

Early consultation of surgical colleagues is part of a recommended multidisciplinary approach to patients with acute upper GI hemorrhage.\(^9\) Epidemiologic studies have demonstrated that despite major advances in endoscopic treatment, the incidence of emergency surgery has not significantly changed.\(^9\)

Vagotomy and drainage procedures are technically simpler but are usually associated with higher ulcer recurrence rate much in contrast, vagotomy 2 resection approaches offer lower ulcer recurrences but represent more challenging operations and are associated with considerable morbidity and mortality.\(^9\)

Follow Up

Patients admitted for bleeding peptic ulcer should be discharged with oral proton pump inhibitors. Those with gastric ulcers should be re-endoscoped in 6 weeks to assess healing and rule out malignancy. Attention should be paid to Helicobacter pylori eradication for all H.pylori positive ulcers. The latter is also recommended for those on long-term aspirin. Those who need to continue on NSAIDs should consider COX-2 inhibitors, or the least damaging NSAID with a proton pump inhibitor.

Consensus Recommendations for Endoscopic Management of Non-variceal upper GI bleed\(^7\)

- Early endoscopy (within the first 24 hours) with risks classification by clinical and endoscopic criteria allows for safe and prompt discharge of patients classified as low risk; improves outcomes for patients classified as either low or high risk.
- A finding of low-risk endoscopic stigmata is not an indication for endoscopic hemostatic therapy. A finding of a clot in an ulcer bed
warrants targeted irrigation in an attempt at dislodgement, with appropriate treatment of the underlying lesion.

- No single solution for endoscopic therapy is superior to another for hemostasis.

- No single method of thermal coaptive therapy is superior to another.

- Monotherapy with injection or thermal coagulation, is an effective endoscopic hemostatic technique for high risk stigmata; the combination is superior to either alone.

- The placement of clips is a promising endoscopic hemostatic therapy.

- Routine second look endoscopy is not recommended.

- In cases of rebleeding, a second attempt at endoscopic therapy is generally recommended.

Conclusion

Non-variceal UGIB is one of the most common emergencies that gastroenterologists encounter, and continues to be a significant cause of morbidity and mortality. The keys to management are rapid resuscitation and stabilization; appropriate triage based on pre-endoscopic risk factors; early endoscopy to achieve prompt diagnosis and implement hemostatic therapy to high-risk lesions; and aggressive antisecretory therapy (in the case of peptic ulcer bleeding) to reduce the risk of continued or recurrent bleeding.

References

